4.7 Article

Dynamical complexity in small-world networks of spiking neurons

期刊

PHYSICAL REVIEW E
卷 78, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.041924

关键词

-

向作者/读者索取更多资源

A computer model is described which is used to assess the dynamical complexity of a class of networks of spiking neurons with small-world properties. Networks are constructed by forming an initially segregated set of highly intraconnected clusters and then applying a probabilistic rewiring method reminiscent of the Watts-Strogatz procedure to make intercluster connections. Causal density, which counts the number of independent significant interactions among a system's components, is used to assess dynamical complexity. This measure was chosen because it employs lagged observations, and is therefore more sensitive to temporally smeared evidence of segregation and integration than its alternatives. The results broadly support the hypothesis that small-world topology promotes dynamical complexity, but reveal a narrow parameter range within which this occurs for the network topology under investigation, and suggest an inverse correlation with phase synchrony inside this range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据