4.7 Article

Properties of ideal Gaussian glass-forming systems

期刊

PHYSICAL REVIEW E
卷 77, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.061507

关键词

-

向作者/读者索取更多资源

We introduce the ideal Gaussian glass-forming system as a model to describe the thermodynamics and dynamics of supercooled liquids on a local scale in terms of the properties of the potential energy landscape (PEL). The first ingredient is the Gaussian distribution of inherent structures, the second a specific relation between energy and mobility. This model is compatible with general considerations as well as with several computer simulations on atomic computer glass formers. Important observables such as diffusion constants, structural relaxation times, and kinetic as well as thermodynamic fragilities can be calculated analytically. In this way it becomes possible to identify a relevant PEL parameter determining the kinetic fragility. Several experimental observations can be reproduced. The remaining discrepancies in the experiment can be qualitatively traced back to the difference between small and large systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据