4.7 Article

Colella-Overhauser-Werner test of the weak equivalence principle: A low-energy window to look into the noncommutative structure of space-time?

期刊

PHYSICAL REVIEW D
卷 89, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.89.025010

关键词

-

向作者/读者索取更多资源

We construct the quantum mechanical model of the Colella-Overhauser-Werner (COW) experiment assuming that the underlying space time has a granular structure, described by a canonical noncommutative algebra of coordinates chi(mu). The time-space sector of the algebra is shown to add a mass-dependent contribution to the gravitational acceleration felt by neutron de Brogli waves measured in a COW experiment. This makes time-space noncommutativity a potential candidate for an apparent violation of the weak equivalence principle even if the ratio of the inertial mass m(i) and gravitational mass m(g) is a universal constant. The latest experimental result based on the COW principle is shown to place an upper bound several orders of magnitude stronger than the existing one on the time-space noncommutative parameter. We argue that the evidence of noncommutative structure of space-time may be found if the COW-type experiment can be repeated with several particle species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据