4.7 Article

Thermal tachyacoustic cosmology

期刊

PHYSICAL REVIEW D
卷 90, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.90.043528

关键词

-

资金

  1. Natural Science and Engineering Research Council of Canada
  2. University of Waterloo
  3. Perimeter Institute for Theoretical Physics
  4. Government of Canada through Industry Canada
  5. Province of Ontario through the Ministry of Research Innovation

向作者/读者索取更多资源

An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; Tau similar to 10(15) GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r greater than or similar to 10(-3)), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据