4.7 Article

Cosmic axion thermalization

期刊

PHYSICAL REVIEW D
卷 85, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.85.063520

关键词

-

资金

  1. U.S. Department of Energy [DE-FG02-97ER41209]

向作者/读者索取更多资源

Axions differ from the other cold dark matter candidates in that they form a degenerate Bose gas. It is shown that their huge quantum degeneracy and large correlation length cause cold dark matter axions to thermalize through gravitational self-interactions when the photon temperature reaches approximately 500 eV. When they thermalize, the axions form a Bose-Einstein condensate. Their thermalization occurs in a regime, herein called the condensed regime,'' where the Boltzmann equation is not valid because the energy dispersion of the particles is smaller than their interaction rate. We derive analytical expressions for the thermalization rate of particles in the condensed regime, and check the validity of these expressions by numerical simulation of a toy model. We revisit axion cosmology in light of axion Bose-Einstein condensation. It is shown that axions are indistinguishable from ordinary cold dark matter on all scales of observational interest, except when they thermalize or rethermalize. The rethermalization of axions that are about to fall in a galactic potential well causes them to acquire net overall rotation as they go to the lowest energy state consistent with the total angular momentum they acquired by tidal torquing. This phenomenon explains the occurrence of caustic rings of dark matter in galactic halos. We find that photons may reach thermal contact with axions and we investigate the implications of this possibility for the measurements of cosmological parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据