4.7 Article

Inelastic dark matter as an efficient fuel for compact stars

期刊

PHYSICAL REVIEW D
卷 81, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.81.103531

关键词

-

资金

  1. U.S. Department of Energy [DE-FG02-95ER40896]
  2. NASA [NAG5-10842]

向作者/读者索取更多资源

Dark matter in the form of weakly interacting massive particles is predicted to become gravitationally captured and accumulate in stars. While the subsequent annihilations of such particles lead to the injection of energy into stellar cores, elastically scattering dark matter particles do not generally yield enough energy to observably impact stellar phenomenology. Dark matter particles that scatter inelastically with nuclei (such that they reconcile the annual modulation reported by DAMA with the null results of CDMS and other experiments), however, can be captured by and annihilate in compact stars at a much higher rate. As a result, old white dwarf stars residing in high dark matter density environments can be prevented from cooling below several thousand degrees Kelvin. Observations of old, cool white dwarfs in dwarf spheroidal galaxies, or in the inner kiloparsec of the Milky Way, can thus potentially provide a valuable test of the inelastic dark matter hypothesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据