4.7 Article

New results on catalyzed big bang nucleosynthesis with a long-lived negatively charged massive particle

期刊

PHYSICAL REVIEW D
卷 81, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.81.083521

关键词

-

资金

  1. JSPS [21.6817, 20244035]
  2. MEXT [20105004]
  3. Mitsubishi Foundation
  4. U.S. Department of Energy [DE-FG02-95-ER40934]

向作者/读者索取更多资源

It has been proposed that the apparent discrepancies between the inferred primordial abundances of Li-6 and Li-7 and the predictions of big bang nucleosynthesis (BBN) can be resolved by the existence of a negatively charged massive unstable supersymmetric particle (X-) during the BBN epoch. Here, we present new BBN calculations with an X- particle utilizing an improved nuclear reaction network including captures of nuclei by the particle, nuclear reactions and beta decays of normal nuclei and nuclei bound to the X- particles (X nuclei), and new reaction rates derived from recent rigorous quantum many-body dynamical calculations. We find that this is still a viable model to explain the observed Li-6 and Li-7 abundances. We also show that with the new rates the production of heavier nuclei is suppressed and there is no signature on abundances of nuclei heavier than Be in the X--particle catalyzed BBN model as has been previously proposed. We also consider the version of this model whereby the X- particle decays into the present cold dark matter. We analyze this paradigm in light of the recent constraints on the dark-matter mass deduced from the possible detected events in the CDMS-II experiment. We conclude that based upon the inferred range for the dark-matter mass, only X- decay via the weak interaction can achieve the desired Li-7 destruction while also reproducing the observed Li-6 abundance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据