4.7 Article

Spatial and temporal tuning in void models for acceleration

期刊

PHYSICAL REVIEW D
卷 82, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.82.103532

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Space Agency
  3. STFC [ST/G000417/1] Funding Source: UKRI
  4. Science and Technology Facilities Council [ST/G000417/1] Funding Source: researchfish

向作者/读者索取更多资源

There has been considerable interest in recent years in cosmological models in which we inhabit a very large, underdense void as an alternative to dark energy. A long-standing objection to this proposal is that observations limit our position to be very close to the void center. By selecting from a family of void profiles that fit supernova luminosity data, we carefully determine how far from the center we could be. To do so, we use the observed dipole component of the cosmic microwave background, as well as an additional stochastic peculiar velocity arising from primordial perturbations. We find that we are constrained to live within 80 Mpc of the center of a void-a somewhat weaker constraint than found in previous studies, but nevertheless a strong violation of the Copernican principle. By considering how such a Gpc-scale void would appear on the microwave sky, we also show that there can be a maximum of one of these voids within our Hubble radius. Hence, the constraint on our position corresponds to a fraction of the Hubble volume of order 10(-8). Finally, we use the fact that void models only look temporarily similar to a cosmological-constant-dominated universe to argue that these models are not free of temporal fine-tuning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据