4.5 Article

Improved density matrix expansion for spin-unsaturated nuclei

期刊

PHYSICAL REVIEW C
卷 82, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.82.014305

关键词

-

资金

  1. US Department of Energy UNEDF SciDAC Collaboration [DEFC02-07ER41457]
  2. US National Science Foundation [PHY-0456903, PHY-0758125]

向作者/读者索取更多资源

A current objective of low-energy nuclear theory is to build nonempirical nuclear energy density functionals (EDFs) from underlying internucleon interactions and many-body perturbation theory (MBPT). The density matrix expansion (DME) of Negele and Vautherin is a convenient method to map highly nonlocal Hartree-Fock expressions into the form of a quasi-local Skyrme functional with density-dependent couplings. In this work, we assess the accuracy of the DME at reproducing the nonlocal exchange (Fock) contribution to the energy. In contrast to the scalar part of the density matrix for which the original formulation of Negele and Vautherin is reasonably accurate, we demonstrate the necessity to reformulate the DME for the vector part of the density matrix, which is needed for an accurate description of spin-unsaturated nuclei. Phase-space-averaging techniques are shown to yield a significant improvement for the vector part of the density matrix compared to the original formulation of Negele and Vautherin. The key to the improved accuracy is to take into account the anisotropy that characterizes the local momentum distribution in the surface region of finite Fermi systems. Optimizing separately the DME for the central, tensor, and spin-orbit contributions to the Fock energy, one reaches a few-percent accuracy over a representative set of semi-magic nuclei. With such an accuracy at hand, one can envision using the corresponding Skyrme-like energy functional as a microscopically constrained starting point around which future phenomenological parametrizations can be built and refined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据