4.5 Article

Decoding beta-decay systematics: A global statistical model for beta(-) half-lives

期刊

PHYSICAL REVIEW C
卷 80, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.80.044332

关键词

-

资金

  1. US National Science Foundation [PHY-0140316]
  2. University of Athens [70/4/3309]

向作者/读者索取更多资源

Statistical modeling of nuclear data provides a novel approach to nuclear systematics complementary to established theoretical and phenomenological approaches based on quantum theory. Continuing previous studies in which global statistical modeling is pursued within the general framework of machine learning theory, we implement advances in training algorithms designed to improve generalization, in application to the problem of reproducing and predicting the half-lives of nuclear ground states that decay 100% by the beta(-) mode. More specifically, fully connected, multilayer feed-forward artificial neural network models are developed using the Levenberg-Marquardt optimization algorithm together with Bayesian regularization and cross-validation. The predictive performance of models emerging from extensive computer experiments is compared with that of traditional microscopic and phenomenological models as well as with the performance of other learning systems, including earlier neural network models as well as the support vector machines recently applied to the same problem. In discussing the results, emphasis is placed on predictions for nuclei that are far from the stability line, and especially those involved in r-process nucleosynthesis. It is found that the new statistical models can match or even surpass the predictive performance of conventional models for beta-decay systematics and accordingly should provide a valuable additional tool for exploring the expanding nuclear landscape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据