4.6 Article

Chiral bosonic Mott insulator on the frustrated triangular lattice

期刊

PHYSICAL REVIEW B
卷 89, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.155142

关键词

-

资金

  1. NSF GRFP [DGE 1106400]
  2. Simons Foundation
  3. Swiss National Science Foundation
  4. ISF
  5. BSF
  6. ERC Synergy UQUAM program
  7. Miller Institute at UC Berkeley
  8. NSF [1066293]

向作者/读者索取更多资源

We study the superfluid and insulating phases of interacting bosons on the triangular lattice with an inverted dispersion, corresponding to frustrated hopping between sites. The resulting single-particle dispersion has multiple minima at nonzero wave vectors in momentum space, in contrast to the unique zero-wave-vector minimum of the unfrustrated problem. As a consequence, the superfluid phase is unstable against developing additional chiral order that breaks time-reversal (T) and parity (P) symmetries by forming a condensate at nonzero wave vector. We demonstrate that the loss of superfluidity can lead to an even more exotic phase, the chiral Mott insulator, with nontrivial current order that breaks T, P. These results are obtained via variational estimates, as well as a combination of bosonization and density-matrix renormalization group of triangular ladders, which, taken together, permit a fairly complete characterization of the phase diagram. We discuss the relevance of these phases to optical lattice experiments, as well as signatures of chiral symmetry breaking in time-of-flight images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据