4.6 Article

Self-energy and vertex functions from hybridization-expansion continuous-time quantum Monte Carlo for impurity models with retarded interaction

期刊

PHYSICAL REVIEW B
卷 89, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.235128

关键词

-

向作者/读者索取更多资源

Optimized measurements for the susceptibility, self-energy, as well as three-leg and four-leg vertex functions are introduced for the continuous-time hybridization-expansion quantum Monte Carlo solver for the impurity model in the presence of a retarded interaction. The self-energy and vertex functions are computed from impurity averages which involve time integrals over the retarded interaction. They can be evaluated efficiently within the segment representation. These quantities are computed within dynamical mean-field theory in the presence of plasmonic screening. In the antiadiabatic regime, the self-energy is strongly renormalized but retains features of the low energy scale set by the screened interaction. An explicit expression for its high-frequency behavior is provided. Across the screening driven and interaction driven metal-insulator transitions, the vertex functions are found to exhibit similar structural changes, which are hence identified as generic features of the Mott transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据