4.6 Article

Quasiparticle spectra, absorption spectra, and excitonic properties of NaI and SrI2 from many-body perturbation theory

期刊

PHYSICAL REVIEW B
卷 89, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.075132

关键词

-

资金

  1. US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. National Nuclear Security Administration Office of Nonproliferation Research and Development [NA-22]
  3. Areas of Advance - Materials Science at Chalmers

向作者/读者索取更多资源

We investigate the basic quantum-mechanical processes behind the nonproportional response of scintillators to incident radiation responsible for reduced resolution. For this purpose, we conduct a comparative first-principles study of quasiparticle spectra on the basis of the G(0)W(0) approximation as well as absorption spectra and excitonic properties by solving the Bethe-Salpeter equation for two important systems, NaI and SrI2. The former is a standard scintillator material with well-documented nonproportionality, while the latter has recently been found to exhibit a very proportional response. We predict band gaps for NaI and SrI2 of 5.5 and 5.2 eV, respectively, in good agreement with experiment. Furthermore, we obtain binding energies for the ground state excitons of 216 meV for NaI and 195 +/- 25 meV for SrI2. We analyze the degree of exciton anisotropy and spatial extent by means of a coarse-grained electron-hole pair-correlation function. Thereby, it is shown that the excitons in NaI differ strongly from those in SrI2 in terms of structure and symmetry, even if their binding energies are similar. Furthermore, we show that quite unexpectedly the spatial extents of the highly-anisotropic low-energy excitons in SrI2 in fact exceed those in NaI by a factor of two to three in terms of the full width at half maxima of the electron-hole pair-correlation function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据