4.6 Article

Excited state and charge dynamics of hybrid organic/inorganic heterojunctions. I. Theory

期刊

PHYSICAL REVIEW B
卷 90, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.045302

关键词

-

资金

  1. ICAM
  2. NSF [PHY-1066293]
  3. Deutsche Forschungsgemeinschaft [SCHM 1031/4-1]

向作者/读者索取更多资源

The different cohesive forces that bond organic (i.e. excitonic) and inorganic semiconductors lead to widely disparate dielectric constants, charge mobilities, and other fundamental optoelectronic properties that make junctions between these materials interesting for numerous practical applications. Yet, there are no detailed theories addressing charge and energy transport across interfaces between these hybrid systems. Here, we develop a comprehensive physical model describing charge transport and photocurrent generation based on first-principles charge and excited state dynamics at the organic/inorganic heterojunction. We consider interfaces that are trap-free, as well as those with an exponential distribution of trap states. We find that the hybrid charge-transfer state resulting from photon absorption near the junction that subsequently migrates to the heterointerface is often unstable at room temperature, leading to its rapid dissociation into free charges that are collected at the device contacts. In the companion Paper II [A. Panda et al., Phys. Rev. B 90, 045303 (2014)], we apply our theories to understanding the optical and electronic properties of archetype organic/inorganic heterojunction diodes. Our analysis provides insights for developing high performance optoelectronic devices whose properties are otherwise inaccessible to either conventional excitonic or inorganic semiconductor junctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据