4.6 Article

Tuning structures and electronic spectra of graphene layers with tilt grain boundaries

期刊

PHYSICAL REVIEW B
卷 89, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.205410

关键词

-

资金

  1. Ministry of Science and Technology of China [2014CB920903, 2013CBA01603, 2013CB921701]
  2. National Natural Science Foundation of China [11374035, 11004010, 51172029, 91121012]
  3. program for New Century Excellent Talents in University of the Ministry of Education of China [NCET-13-0054]
  4. Beijing Higher Education Young Elite Teacher Project [YETP0238]

向作者/读者索取更多资源

Despite the fact that structures and properties of tilt grain boundaries of graphite surface and graphene have been extensively studied, their effect on the structures and electronic spectra of graphene layers has not been fully addressed. Here we study effects of one-dimensional tilt grain boundaries on structures and electronic spectra of graphene multilayers by scanning tunneling microscopy and spectroscopy. A tilt grain boundary of a top graphene sheet in graphene multilayers leads to a twist between consecutive layers and generates superstructures (Moire patterns) on one side of the boundary. Our results demonstrate that the twisting changes the electronic spectra of Bernal graphene bilayer and graphene trilayers dramatically. We also study quantum-confined twisted graphene bilayer generated between two adjacent tilt grain boundaries and find that the band structure of such a system is still valid even when the number of superstructures is reduced to two in one direction. It implies that the electronic structure of this system is driven by the physics of a single Moire spot.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据