4.6 Article

Spin polarization, dephasing, and photoinduced spin diffusion in (110)-grown two-dimensional electron systems

期刊

PHYSICAL REVIEW B
卷 89, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.89.075424

关键词

-

资金

  1. DFG [SPP 1285, SFB 689]
  2. RFBR
  3. RF [MD-2062.2012.2]

向作者/读者索取更多资源

We study the optically induced spin polarization, spin dephasing, and diffusion in several high-mobility two-dimensional electron systems, which are embedded in GaAs quantum wells grown on (110)-oriented substrates. The experimental techniques comprise a two-beam magneto-optical spectroscopy system and polarization-resolved photoluminescence. Under weak excitation conditions at liquid-helium temperatures, we observe spin lifetimes above 100 ns in one of our samples, which are reduced with increasing excitation density due to additional, hole-mediated, spin dephasing. The spin dynamic is strongly influenced by the carrier density and the ionization of remote donors, which can be controlled by temperature and above-barrier illumination. The absolute value of the average electron spin polarization in the samples is directly observable in the circular polarization of photoluminescence collected under circularly polarized excitation and reaches values of about 5%. Spin diffusion is studied by varying the distance between pump and probe beams in microspectroscopy experiments. We observe diffusion lengths above 100 mu m and, at high excitation intensity, a nonmonotonic dependence of the spin polarization on the pump-probe distance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据