4.6 Article

Floquet edge states in a harmonically driven integer quantum Hall system

期刊

PHYSICAL REVIEW B
卷 90, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.90.205108

关键词

-

资金

  1. AFOSR [FA9550-12-1-0079]
  2. NSF [PHY-1205504]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Physics [1205504] Funding Source: National Science Foundation

向作者/读者索取更多资源

Recent theoretical work on time-periodically kicked Hofstadter model found robust counterpropagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed further light on the nature of these modes by analyzing a simple type of periodic driving where the hopping along one spatial direction is modulated sinusoidally with time while the hopping along the other spatial direction is kept constant. We obtain the phase diagram for the quasienergy spectrum at flux 1/3 as the driving frequency omega and the hopping anisotropy are varied. A series of topologically distinct phases with counterpropagating edge modes appear due to the harmonic driving, similar to the case of a periodically kicked system studied earlier. We analyze the time dependence of the pair of Floquet edge states localized at the same edge and compare their Fourier components in the frequency domain. In the limit of small modulation, one of the Floquet edge mode within the pair can be viewed as the edge mode originally living in the other energy gap shifted in quasienergy by h omega, i.e., by absorption or emission of a photon of frequency omega. Our result suggests that counterpropagating Floquet edge modes are generic features of periodically driven integer quantum Hall systems, and not tied to any particular driving protocol. It also suggests that the Floquet edge modes would remain robust to any static perturbations that do not destroy the chiral edge modes of static quantum Hall states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据