4.6 Article

Trap states in ZnPc:C60 small-molecule organic solar cells

期刊

PHYSICAL REVIEW B
卷 87, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.045432

关键词

-

资金

  1. German Federal Ministry of Education and Research (BMBF) [13N9720]

向作者/读者索取更多资源

Trap states are known to be one of the key parameters limiting charge transport in organic semiconductors and hence the performance of organic solar cells. Here, small-molecule organic solar cells based on a bulk heterojunction between zinc-phtalocyanine (ZnPc) and the fullerene C60 are characterized according to their trapping nature by noninvasive methods and under ambient conditions. We show how impedance spectroscopy, applied to systematically varied device structures, reveals the trap localization as well as its occupation mechanisms. Further insight is given from investigations of different device working points and illumination intensities. Thus, we find the traps to be bulk states in the active layer with an electron-trapping nature. They can be described by a Gaussian energy distribution of 55 meV width, centered at 0.46 eV below the electron transport level and with a concentration of 3.5 x 10(16) cm(-3). Moreover, the trap states act as recombination centers in the presence of injected or photogenerated charge carriers. The results are confirmed by electrical simulations. DOI: 10.1103/PhysRevB.87.045432

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据