4.6 Article

Origin of giant Rashba spin splitting in Bi/Ag surface alloys

期刊

PHYSICAL REVIEW B
卷 88, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.085427

关键词

-

资金

  1. U.S. Department of Energy [DE-FG02-07ER46383]
  2. University of Wisconsin-Madison
  3. U.S. National Science Foundation [DMR-09-06444]
  4. U.S. Department of Energy (DOE) [DE-FG02-07ER46383] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

One-third of a monolayer of Bi alloyed into the Ag(111) surface yields a pair of Rashba spin-split free-electron-like surface states. The splitting in momentum space is the largest of all surface alloys investigated. Using first-principles calculations, we have determined the spin splitting in this system as a function of atomic corrugation of the top atomic layer and the strengths of the atomic spin-orbit coupling in Bi and Ag. The calculated splitting is proportional to the strengths of the atomic spin-orbit coupling, but it peaks at a certain surface corrugation parameter. These findings indicate that the observed giant spin splitting is caused by a near-optimal surface corrugation and a large atomic spin-orbit coupling in Bi. The results offer a useful guide for searching for two-dimensional systems with large surface spin effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据