4.6 Article

Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations

期刊

PHYSICAL REVIEW B
卷 88, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.115413

关键词

-

资金

  1. Elements Strategy Initiative for Structural Materials (ESISM)
  2. Scientific Research on Innovative Area Bulk Nanostructured Metals [22102003, 23246025, 25630013]
  3. JST under Collaborative Research Based on Industrial Demand (Heterogeneous Structure Control)
  4. Grants-in-Aid for Scientific Research [23246025] Funding Source: KAKEN

向作者/读者索取更多资源

Understanding the grain size effect on diffusion in nanocrystals has been hampered by the difficulty of measuring diffusion directly in experiments. Here large-scale atomistic modeling is applied to understand the diffusion kinetics in nanocrystals. Enhanced short-circuit diffusivity is revealed to be controlled by the rule of mixtures for grain-boundary diffusion and lattice diffusion, which can be accurately described by the Maxwell-Garnett equation instead of the commonly thought Hart equation, and the thermodynamics of pure grain-boundary self-diffusion is not remarkably affected by varying grain size. Experimentally comparable Arrhenius parameters with atomic detail validate our results. We also propose a free-volume diffusion mechanism considering negative activation entropy and small activation volume. These help provide a fundamental understanding of how the activation parameters depend on size and the structure-property relationship of nanostructured materials from a physical viewpoint.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据