4.6 Article

Mott p-n junctions in layered materials

期刊

PHYSICAL REVIEW B
卷 87, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.035137

关键词

-

资金

  1. Vanier Scholarship from NSERC
  2. Canada Research Chair Program
  3. NSERC

向作者/读者索取更多资源

The p-n junction has provided the basis for the semiconductor-device industry. Investigations of p-n junctions based on Mott insulators is still in its infancy. Layered Mott insulators, such as cuprates or other transition metal oxides, present a special challenge since strong in-plane correlations are important. Here we model the planes carefully using plaquette cellular dynamical mean field theory with an exact diagonalization solver. The energy associated with interplane hopping is neglected compared with the long-range Coulomb interaction that we treat in the Hartree-Fock approximation. Within this new approach, dynamical layer theory, the charge redistribution is obtained at the final step from minimization of a function of the layer fillings. A simple analytical description of the solution, in the spirit of the Thomas-Fermi theory, reproduces quite accurately the numerical results. Various interesting charge reconstructions can be obtained by varying the Fermi energy differences between both sides of the junction. One can even obtain quasi-two-dimensional charge carriers at the interface, in the middle of a Mott insulating layer. The density of states as a function of position does not follow the simple band bending picture of semiconductors. DOI: 10.1103/PhysRevB.87.035137

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据