4.6 Article

Microscopic theory of the insulating electronic ground states of the actinide dioxides AnO2 (An= U, Np, Pu, Am, and Cm)

期刊

PHYSICAL REVIEW B
卷 88, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.195146

关键词

-

资金

  1. JSPS KAKENHI [23246174, 24540369]
  2. Swedish Research Council (VR), the Joint Research Center of the European Commission, Svensk K arnbr anslehantering AB (SKB)
  3. Swedish National Infrastructure for Computing (SNIC)
  4. Supercomputer Center of the Institute for Solid State Physics at the University of Tokyo
  5. Japan Atomic Energy Agency (JAEA)
  6. Office of Science, of the U. S. Department of Energy [DE-C02-05CH11231]
  7. Grants-in-Aid for Scientific Research [23246174, 24540369] Funding Source: KAKEN

向作者/读者索取更多资源

The electronic states of the actinide dioxides AnO(2) (with An= U, Np, Pu, Am, and Cm) are investigated employing first-principles calculations within the framework of the local density approximation + U(LDA + U) approach, implemented in a full-potential linearized augmented plane-wave scheme. A systematic analysis of the An-5f states is performed which provides intuitive connections between the electronic structures and the local crystalline fields of the f states in the AnO(2) series. Particularly the mechanisms leading to the experimentally observed insulating ground states are investigated. These are found to be caused by the strong spin-orbit and Coulomb interactions of the 5f orbitals; however, as a result of the different configurations, thismechanismworks in distinctly different ways for each of the AnO(2) compounds. In agreement with experimental observations, the nonmagnetic states of plutonium and curium dioxide are computed to be insulating, whereas those of uranium, neptunium, and americium dioxides require additional symmetry breaking to reproduce the insulator ground states, a condition which is met with magnetic phase transitions. We show that the occupancy of the An-f orbitals is closely connected to each of the appearing insulating mechanisms. We furthermore investigate the detailed constitution of the noncollinear multipolar moments for transverse 3q magnetic ordered states in UO2 and longitudinal 3q high-rank multipolar ordered states in NpO2 and AmO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据