4.6 Article

Current-induced switching in transport through anisotropic magnetic molecules

期刊

PHYSICAL REVIEW B
卷 85, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.115440

关键词

-

资金

  1. Alexander von Humboldt foundation
  2. CONICET
  3. MINCyT (Argentina)
  4. Guggenheim Foundation
  5. [SFB 658]

向作者/读者索取更多资源

Anisotropic single-molecule magnets may be thought of as molecular switches, with possible applications to molecular spintronics. In this paper, we consider current-induced switching in single-molecule junctions containing an anisotropic magnetic molecule. We assume that the carriers interact with the magnetic molecule through the exchange interaction and focus on the regime of high currents in which the molecular spin dynamics is slow compared to the time which the electrons spend on the molecule. In this limit, the molecular spin obeys a nonequilibrium Langevin equation which takes the form of a generalized Landau-Lifshitz-Gilbert equation and which we derive microscopically by means of a nonequilibrium Born-Oppenheimer approximation. We exploit this Langevin equation to identify the relevant switching mechanisms and to derive the current-induced switching rates. As a by-product, we also derive S-matrix expressions for the various torques entering into the Landau-Lifshitz-Gilbert equation which generalize previous expressions in the literature to nonequilibrium situations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据