4.6 Article

Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

期刊

PHYSICAL REVIEW B
卷 85, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.054514

关键词

-

资金

  1. Swiss National Science Foundation [200020-11978, 200020-129484]
  2. NCCR
  3. Office of Science, Materials Sciences and Engineering Division of the US Department of Energy
  4. European Research Council [239739 STEMOX]
  5. Swiss National Science Foundation (SNF) [200020_129484] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Heteroepitaxial superlattices of [YBa2Cu3O7(n)/La0.67Ca0.33MnO3(m)](x) (YBCO/LCMO), where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO3 (110) and Sr0.7La0.3Al0.65Ta0.35O3 (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO3, they do not give rise to complex and uncontrolled strain effects at low temperature. The growth dynamics and the structure have been studied in situ with reflection high-energy electron diffraction and ex situ with scanning transmission electron microscopy, x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit-cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer, while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO2 bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and, thus, half of their hole-doping reservoir. Nevertheless, from electric transport measurements on a superlattice with n = 2 we obtain evidence that the interfacial CuO2 bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据