4.6 Article

Graphene on metal surfaces and its hydrogen adsorption: A meta-GGA functional study

期刊

PHYSICAL REVIEW B
卷 86, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.085405

关键词

-

资金

  1. Danish Research Council
  2. Lundbeck Foundation
  3. Danish Center for Scientific Computing

向作者/读者索取更多资源

The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study large systems inaccessible to RPA with H adsorbed on graphene on a selected strongly (Ni) and a selected weakly (Pt) interacting substrate. Very stable graphane-like clusters, where every other C atom binds to a H atom above and every other to a metal atom below, are found on both substrates. Such graphane-like clusters have been proposed to be responsible for opening a band gap in graphene. On Ni we find that the binding energies of the H clusters are almost constant with the cluster size, whereas on Pt the binding energies increase with the cluster size. Comparing the Perdew-Burke-Ernzerhof and M06-L functionals we demonstrate the importance of accounting for dispersive interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据