4.6 Article

Configuration interaction calculations of the controlled phase gate in double quantum dot qubits

期刊

PHYSICAL REVIEW B
卷 85, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.035319

关键词

-

资金

  1. Sandia National Laboratories
  2. US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

We consider qubit coupling resulting from the capacitive coupling between two double quantum dot (DQD) singlet-triplet qubits. Calculations of the coupling when the two DQDs are detuned symmetrically or asymmetrically are performed using a full configuration interaction (CI). The full CI reveals behavior that is not observed by more commonly used approximations such as Heitler London or Hund Mulliken, particularly related to the operation of both DQDs in the (0,2) charge sector. We find that there are multiple points in detuning space where a two-qubit entangling gate can be realized, and that tradeoffs between coupling magnitude and sensitivity to fluctuations in detuning make a case for operating the gate in the (0,2) regime not commonly considered.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据