4.6 Article

Route towards huge magnetoresistance in doped polymers

期刊

PHYSICAL REVIEW B
卷 86, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.045210

关键词

-

资金

  1. Stichting voor Fundamenteel Onderzoek der Materie (FOM)
  2. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

向作者/读者索取更多资源

Room-temperature magnetoresistance of the order of 10% has been observed in organic semiconductors. We predict that even larger magnetoresistance can be realized in suitably synthesized doped conjugated polymers. In such polymers, ionization of dopants creates free charges that recombine with a rate governed by a competition between an applied magnetic field and random hyperfine fields. This leads to a spin-blocking effect that depends on the magnetic field. We show that the combined effects of spin blocking and charge blocking, the fact that two free charges cannot occupy the same site, lead to a magnetoresistance of almost two orders of magnitude. This magnetoresistance occurs even at vanishing electric field and is therefore a quasiequilibrium effect. The influences of the dopant strength, energetic disorder, and interchain hopping are investigated. We find that the dopant strength and energetic disorder have only little influence on the magnetoresistance. Interchain hopping strongly decreases the magnetoresistance because it can lift spin-blocking and charge-blocking configurations that occur in strictly one-dimensional transport. We provide suggestions for realization of polymers that should show this magnetoresistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据