4.6 Article

Topological superconductivity and Majorana fermions in metallic surface states

期刊

PHYSICAL REVIEW B
卷 85, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.094516

关键词

-

资金

  1. US Department of Energy [DEFG0203ER46076]
  2. National Science Foundation [DGE-0801525]

向作者/读者索取更多资源

Heavy metals, such as Au, Ag, and Pb, often have sharp surface states that are split by strong Rashba spin-orbit coupling. The strong spin-orbit coupling and two-dimensional nature of these surface states make them ideal platforms for realizing topological superconductivity and Majorana fermions. In this paper we further develop a proposal to realize Majorana fermions at the ends of quasi-one-dimensional metallic wires. We show how superconductivity can be induced on the metallic surface states by a combination of proximity effect, disorder, and interactions. Applying a magnetic field along the wire can drive the wire into a topologically nontrivial state with Majorana end states. Unlike the case of a perpendicular field, where the chemical potential must be fine-tuned near the Rashba band crossing, the parallel field allows one to realize Majorana fermions for an arbitrarily large chemical potential. We then show that, despite the presence of a large carrier density from the bulk metal, it is still possible to effectively control the chemical potential of the surface states by gating. The simplest version of our proposal, which involves only an Au(111) film deposited on a conventional superconductor, should be readily realizable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据