4.6 Article

Helical BN and ZnO nanotubes with intrinsic twisting: An objective molecular dynamics study

期刊

PHYSICAL REVIEW B
卷 84, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.115431

关键词

-

资金

  1. NSF [DMR-1006706, CMMI-0747684]
  2. AFOSR [FA9550-09-1-0339]

向作者/读者索取更多资源

We investigate helical single-walled nanotubes of BN and ZnO described with density-functional based tight-binding models. The employed objective molecular dynamics computational framework accounts for the helical instead of the translational symmetry and allows for simulating chiral nanotubes as the result of the nanomechanical process of a nearly axial glide [D.-B. Zhang, R. D. James, and T. Dumitrica, J. Chem. Phys. 130, 071101 (2009)]. At large diameters, by comparing the microscopic strain stored in the tube wall with the continuum predictions, we observe the invalidity of the continuum shell idealization of the one-atom thick layer. At small diameters, comparing the computed Eshelby twist executed by the one-atom thick layers with the one predicted by pure rolling, we find that a large catalog of nanotubes store intrinsic twists. This unusual intrinsic twist effect is shown to be dependent on chirality and diameter, as part of the general trend to depart from the standard rolled-up construction. While changes in the electronic structures and Young's modulus are dominated by curvature, the shear elastic constants vary both with curvature and chirality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据