4.6 Article

Impurity effects on semiconductor quantum bits in coupled quantum dots

期刊

PHYSICAL REVIEW B
卷 83, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.235322

关键词

-

资金

  1. LPS-NSA
  2. IARPA

向作者/读者索取更多资源

We theoretically consider the effects of having unintentional charged impurities in laterally coupled two-dimensional double (GaAs) quantum-dot systems, where each dot contains one or two electrons and a single charged impurity. Using molecular orbital and configuration interaction methods, we calculate the effect of the impurity on the two-electron energy spectrum of each individual dot as well as on the spectrum of the coupled-double-dot two-electron system. We find that the singlet-triplet exchange splitting between the two lowest-energy states, both for the individual dots and the coupled-dot system, depends sensitively on the location of the impurity and its coupling strength (i.e. the effective charge). A strong electron-impurity coupling breaks down the equality of the two doubly occupied singlets in the left and the right dots, leading to a mixing between different spin singlets. As a result, the maximally entangled qubit states are no longer fully obtained in the zero-magnetic-field case. Moreover, a repulsive impurity results in a triplet-singlet transition as the impurity effective charge increases or the impurity position changes. We comment on the impurity effect in spin qubit operations in the double-dot system based on our numerical results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据