4.6 Article

Single domain to multidomain transition due to in-plane magnetic anisotropy in phase-separated (La0.4Pr0.6)0.67Ca0.33MnO3 thin films

期刊

PHYSICAL REVIEW B
卷 83, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.064408

关键词

-

资金

  1. NSF [DMR-0804452]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [0804452] Funding Source: National Science Foundation

向作者/读者索取更多资源

Phase-separated perovskite manganites have competing phases with different crystal structures, and magnetic and electronic properties. Hence, strain effects play a critical role in determining the magnetic properties of manganite thin films. Here we report the effect of anisotropic stress on the magnetic properties of the phase-separated manganite (La0.4Pr0.6)(0.67)Ca0.33MnO3. Thin films of (La0.4Pr0.6)(0.67)Ca0.33MnO3 grown under anisotropic in-plane stress on (110) NdGaO3 substrates display in-plane magnetic anisotropy and single domain to multidomain transition as a function of temperature. Angle-dependent magnetization measurements also show that the magnetization reversal occurs mainly through the nucleation and propagation mechanism. By comparing the results with (La0.4Pr0.6)(0.67)Ca0.33MnO3 thin films grown on (001) SrLaGaO4 substrates, we have confirmed that the magnetic anisotropy is mainly due to substrate-induced anisotropic stress. Our results suggest avenues for storing magnetic information in nanoscale magnetic media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据