4.6 Article

Ab initio calculation of d-d excitations in quasi-one-dimensional Cu d9 correlated materials

期刊

PHYSICAL REVIEW B
卷 84, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.235125

关键词

-

资金

  1. National Science Council of Taiwan [NSC-100-2917-I-007-006]
  2. European Union
  3. German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)

向作者/读者索取更多资源

With wave-function-based electronic-structure calculations we determine the Cu d-d excitation energies in quasi-one-dimensional spin-chain and ladder copper oxides. A complete set of local excitations has been calculated for cuprates with corner-sharing (Sr2CuO3 and SrCuO2) and edge-sharing (LiVCuO4, CuGeO3, LiCu2O2, and Li2CuO2) CuO4 plaquettes, with corner-sharing CuF6 octahedra (KCuF3), for the ladder system CaCu2O3, and for multiferroic cupric oxide CuO. Our data compare well with available results of optical absorption measurements on KCuF3 and the excitation energies found by resonant inelastic x-ray scattering experiments for CuO. The ab initio results we report for the other materials should be helpful for the interpretation of future resonant inelastic x-ray scattering experiments on those highly anisotropic compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Multidisciplinary

Enhancement of superexchange due to synergetic breathing and hopping in corner-sharing cuprates

Nikolay A. Bogdanov, Giovanni Li Manni, Sandeep Sharma, Olle Gunnarsson, Ali Alavi

Summary: Cuprates exhibit exotic states due to the interplay between spin, charge, and orbital degrees of freedom. Ab initio calculations reveal that the orbital expansion mechanism plays a key role in the magnetic properties of cuprates. Additionally, the electronic properties of cuprates are highly sensitive to the presence and displacement of apical oxygens perpendicular to the CuO2 planes, influencing the nearest-neighbour superexchange antiferromagnetic coupling.

NATURE PHYSICS (2022)

Article Physics, Multidisciplinary

Ab Initio Wavefunction Analysis of Electron Removal Quasi-Particle State of NdNiO2 With Fully Correlated Quantum Chemical Methods

Vamshi M. Katukuri, Nikolay A. Bogdanov, Ali Alavi

Summary: The discovery of superconductivity in hole-doped infinite-layer NdNiO2 has reinvigorated the study of unconventional superconductivity. By using advanced quantum chemistry methods, we investigated the electron removal states in NdNiO2 and found that the hole-doped d(8) ground state is different from the isostructural cuprate analog. The analysis shows that the doped hole mainly localizes on the Ni 3d(x2-y2) orbital to form a closed-shell singlet in NdNiO2. Furthermore, we quantified the different types of electronic correlations in both NdNiO2 and cuprate compounds and found that the dynamic radial-type correlations within the Ni d manifold are persistent in hole-doped NdNiO2.

FRONTIERS IN PHYSICS (2022)

Article Materials Science, Multidisciplinary

Spin-split collinear antiferromagnets: A large-scale ab-initio study

Yaqian Guo, Hui Liu, Oleg Janson, Ion Cosma Fulga, Jeroen van den Brink, Jorge I. Facio

Summary: It has been discovered that collinear antiferromagnets, depending on their symmetries, can break the spin degeneracy in momentum space without spin-orbit coupling. These systems, known as altermagnets, are characterized by a spin-momentum texture determined by crystal and magnetic structure. This study focuses on q = 0 antiferromagnetic compounds in the MAGNDATA database and introduces numerical measures for average momentum-space spin splitting, analyzing over sixty compounds including CoF2, FeSO4F, LiFe2F6, RuO2, CrNb4S8, and CrSb.

MATERIALS TODAY PHYSICS (2023)

Article Multidisciplinary Sciences

Chiral phonons in quartz probed by X-rays

Hiroki Ueda, Mirian Garcia-Fernandez, Stefano Agrestini, Carl P. Romao, Jeroen van den Brink, Nicola A. Spaldin, Ke-Jin Zhou, Urs Staub

Summary: The concept of chirality plays a crucial role in various natural phenomena. Recent studies in condensed matter physics have revealed the existence of chiral fermions and their connection to emergent phenomena and topology. However, experimental verification of chiral phonons in macroscopic systems remains challenging. In this study, we provide experimental evidence of chiral phonons using resonant inelastic X-ray scattering with circularly polarized X-rays. By studying the chiral material quartz, we demonstrate that circularly polarized X-rays couple to chiral phonons at specific positions in reciprocal space, allowing for the determination of the chiral dispersion of lattice modes. This experimental proof of chiral phonons introduces a new degree of freedom in condensed matter physics, with both fundamental importance and potential for exploring novel emergent phenomena based on chiral bosons.

NATURE (2023)

Article Materials Science, Multidisciplinary

Surface induced electronic Berry curvature in bulk Berry curvature free materials

Dennis Wawrzik, Jorge I. Facio, Jeroen van den Brink

Summary: In recent years, the concept of electronic Berry curvature (BC) has been recognized as crucial for understanding and predicting physical properties of crystalline materials. While non-magnetic materials with inversion symmetry have a strictly zero BC in their bulk, we demonstrate that a finite BC can emerge at their surfaces and interfaces, resulting in Hall-type transport responses. Through first principles calculations, we observe the presence of a surface Berry curvature dipole and associated quantum nonlinear Hall effects at various symmetries of bismuth, mercury-telluride (HgTe), and rhodium surfaces. This discovery opens up a wide range of materials to explore and harness the physical effects arising from electronic Berry curvature exclusively at their boundaries.

MATERIALS TODAY PHYSICS (2023)

Article Physics, Applied

CoFeSn, a possible contender for spintronics: A first-principles study

Rakshanda Dhawan, Vikrant Chaudhary, Chandan Kumar Vishwakarma, Mohd Zeeshan, Tashi Nautiyal, Jeroen van den Brink, Hem C. Kandpal

Summary: Anomalous carrier transport in magnetic Heusler compounds has attracted significant attention due to their unique band structure and broken time-reversal symmetry. In this study, we investigate the properties of CoFeSn and propose a cubic polymorph based on structural stability, lattice dynamics, and magnetic analysis. Utilizing density-functional-theory calculations, we predict that cubic CoFeSn exhibits robust half-metallic ferromagnetic behavior with a high Curie temperature and significant spin Hall conductivity. We also find that adjusting the Fermi level can enhance the anomalous Hall conductivity or spin Hall conductivity. Our findings provide important insights for the realization of quantum anomalous and spin Hall effects in half-Heusler compounds.

APPLIED PHYSICS LETTERS (2023)

Article Multidisciplinary Sciences

Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi

Wuyang Ren, Wenhua Xue, Shuping Guo, Ran He, Liangzi Deng, Shaowei Song, Andrei Sotnikov, Kornelius Nielsch, Jeroen van den Brink, Guanhui Gao, Shuo Chen, Yimo Han, Jiang Wu, Ching-Wu Chu, Zhiming Wang, Yumei Wang, Zhifeng Ren

Summary: Studies have shown that vacancy-mediated anomalous transport properties are flourishing in various fields due to their fascinating effects on photoelectric, ferroelectric, and spin-electric behaviors in solid materials. In this study, the authors reveal the multifunctionality of vacancy in tailoring the transport properties of a defective half-Heusler ZrNiBi material, providing insights into the phononic and electronic transport processes. These findings not only demonstrate the potential of this thermoelectric material but also promote further exploration of vacancy-mediated transport properties.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

NaRuO2: Kitaev-Heisenberg exchange in triangular-lattice setting

Pritam Bhattacharyya, Nikolay A. Bogdanov, Satoshi Nishimoto, Stephen D. Wilson, Liviu Hozoi

Summary: The Kitaev exchange in triangular-lattice materials is found to be antiferromagnetic, in contrast to the ferromagnetic behavior in honeycomb compounds. This discovery provides a new explanation for the experimentally observed quantum spin liquid and reveals the factors that influence the exchange paths and effective coupling parameters.

NPJ QUANTUM MATERIALS (2023)

Article Physics, Multidisciplinary

Magnetoelectricity induced by rippling of magnetic nanomembranes and wires

Carmine Ortix, Jeroen van den Brink

Summary: Magnetoelectric crystals have the ability to convert electric fields into magnetic polarizations and magnetic fields into ferroelectric polarizations. In this study, a new method is proposed to achieve linear magnetoelectric coupling in ferromagnetic insulators using nanoscale curved geometries and intrinsic Dzyaloshinskii-Moriya interaction (DMI). The reorganization of the magnetic texture induced by the combination of curved geometries and DMI breaks inversion symmetry and creates macroscopic magnetoelectric multipoles. This study demonstrates the activation of a magnetoelectric monopole in two-dimensional magnets through controlled ripples and the direct linear magnetoelectric coupling in zigzag-shaped ferromagnetic wires.

PHYSICAL REVIEW RESEARCH (2023)

Article Materials Science, Multidisciplinary

Anisotropic optics and gravitational lensing of tilted Weyl fermions

Viktor Koenye, Lotte Mertens, Corentin Morice, Dmitry Chernyavsky, Ali G. Moghaddam, Jasper van Wezel, Jeroen van den Brink

Summary: We demonstrate that tilted Weyl semimetals with spatially varying tilt can be used to study anisotropic optics and curved spacetime. By examining specific tilting configurations, we numerically analyze the time evolution of electronic wave packets and current densities. Our results show that electron trajectories in such systems can be determined using Fermat's principle with an inhomogeneous, anisotropic effective refractive index. Additionally, we show that these systems can simulate gravitational lensing around a synthetic black hole, revealing gravitational features.

PHYSICAL REVIEW B (2023)

Article Physics, Multidisciplinary

Disorder effects in the Kitaev-Heisenberg model

Ayushi Singhania, Jeroen van den Brink, Satoshi Nishimoto

Summary: This study investigates the interplay of disorder and Heisenberg interactions in the Kitaev model on a honeycomb lattice. The effects of disorder on the transition between Kitaev spin liquid and magnetic ordered states as well as the stability of magnetic ordering are examined. The results show that disorder reduces the range of spin-liquid phases and changes the transitions to magnetic ordered phases to a more crossoverlike behavior. In addition, long-range orderings in the clean system are replaced by domains with different ordering directions.

PHYSICAL REVIEW RESEARCH (2023)

Article Materials Science, Multidisciplinary

First-order topological phase transitions and disorder-induced Majorana modes in interacting fermion chains

Shruti Agarwal, Shreekant Gawande, Satoshi Nishimoto, Jeroen Van den Brink, Sanjeev Kumar

Summary: Using a combination of mean-field Bogoliubov-de Gennes approach and density matrix renormalization group method, we discovered first-order topological transitions between topological superconducting and trivial insulating phases in a sawtooth lattice of intersite attractive fermions. The topological properties of different phases were characterized in terms of winding numbers, Majorana edge modes, and entanglement spectra. By studying the effect of disorder on first-order topological phase transitions, we established disorder-induced topological phase coexistence as a mechanism for generating a finite density of Majorana particles.

PHYSICAL REVIEW B (2023)

Article Physics, Multidisciplinary

Horizon physics of quasi-one-dimensional tilted Weyl cones on a lattice

Viktor Koenye, Corentin Morice, Dmitry Chernyavsky, Ali G. Moghaddam, Jeroen van den Brink, Jasper van Wezel

Summary: In this study, we simulate the dynamics of massless Dirac fermions in curved space-times with one, two, and three spatial dimensions by constructing tight-binding Hamiltonians with spatially varying hoppings. These models represent tilted Weyl semimetals where the tilting varies with position, similar to the light cones near the horizon of a black hole. We demonstrate the gravitational analogies in these models by numerically evaluating the propagation of wave packets on the lattice and comparing them to the geodesics of the corresponding curved space-time. We also show that the motion of electrons in these spatially varying systems can be understood through the conservation of energy and the quasiconservation of quasimomentum. Furthermore, we reveal that horizons in the lattice models can be constructed with finite energies using specially designed tilting profiles.

PHYSICAL REVIEW RESEARCH (2022)

Article Physics, Multidisciplinary

Magnetic warping in topological insulators

Gabriele Naselli, Ali G. Moghaddam, Solange Di Napoli, Veronica Vildosola, Ion Cosma Fulga, Jeroen van den Brink, Jorge I. Facio

Summary: We analyze the electronic structure of topological surface states in the family of magnetic topological insulators. We show that, at the magnetic ordering temperature, the symmetry of the Dirac cone warping changes from hexagonal to trigonal, leading to energy splitting between surface states. This energy splitting can be used as a simple protocol to detect magnetic ordering via the surface electronic structure.

PHYSICAL REVIEW RESEARCH (2022)

Article Materials Science, Multidisciplinary

Ferromagnetic helical nodal line and Kane-Mele spin-orbit coupling in kagome metal Fe3Sn2

Shiang Fang, Linda Ye, Madhav Prasad Ghimire, Mingu Kang, Junwei Liu, Minyong Han, Liang Fu, Manuel Richter, Jeroen van den Brink, Efthimios Kaxiras, Riccardo Comin, Joseph G. Checkelsky

Summary: In this study, we investigated the electronic structure of the ferromagnetic kagome metal Fe3Sn2 without spin-orbit coupling. We found two energetically split helical nodal lines near K and K' in the Brillouin zone, resulting from the trigonal stacking of the kagome layers. The hopping across A-A stacking introduced energy splitting, while that across A-B stacking controlled the momentum space amplitude of the helical nodal lines. Our findings have important implications for the design of topological materials.

PHYSICAL REVIEW B (2022)

暂无数据