4.6 Article

Tuning of competing magnetic and superconducting phase volumes in LaFeAsO0.945F0.055 by hydrostatic pressure

期刊

PHYSICAL REVIEW B
卷 84, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.100501

关键词

-

资金

  1. Swiss National Foundation (SNF)
  2. NMI3 Access Programme
  3. MIUR PRIN [2008XWLWF9]
  4. NCCR program MaNEP

向作者/读者索取更多资源

The interplay between magnetism and superconductivity in LaFeAsO0.945F0.055 was studied as a function of hydrostatic pressure up to p similar or equal to 2.4 GPa by means of muon-spin rotation (mu SR) and magnetization measurements. The application of pressure leads to a substantial decrease of the magnetic ordering temperature, reduction of the magnetic phase volume and, at the same time, to a strong increase of the superconducting transition temperature and the diamagnetic susceptibility. From the volume-sensitive mu SR measurements it can be concluded that the superconducting and the magnetic areas, coexisting in the same sample, are inclined toward spatial separation and compete for phase volume as a function of pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Instruments & Instrumentation

In situ uniaxial pressure cell for x-ray and neutron scattering experiments

G. Simutis, A. Bollhalder, M. Zolliker, J. Kuespert, Q. Wang, D. Das, F. Van Leeuwen, O. Ivashko, O. Gutowski, J. Philippe, T. Kracht, P. Glaevecke, T. Adachi, M. Zimmermann, S. Van Petegem, H. Luetkens, Z. Guguchia, J. Chang, Y. Sassa, M. Bartkowiak, M. Janoschek

Summary: We propose an in situ uniaxial pressure device designed for small angle x-ray and neutron scattering experiments at low temperatures and high magnetic fields. The device uses a rod with an integrated transducer to transmit force to the sample, allowing forces of up to 200 N in both compressive and tensile configurations. It can be operated in a continuous-pressure mode with feedback control while the temperature is changing. The device is compatible with various instruments and cryostats through simple and exchangeable adapters, and it supports rapid sample changes with multiple sample holders.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Multidisciplinary Sciences

Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5

Z. Guguchia, C. Mielke, D. Das, R. Gupta, J. -X. Yin, H. Liu, Q. Yin, M. H. Christensen, Z. Tu, C. Gong, N. Shumiya, Md Shafayat Hossain, Ts Gamsakhurdashvili, M. Elender, Pengcheng Dai, A. Amato, Y. Shi, H. C. Lei, R. M. Fernandes, M. Z. Hasan, H. Luetkens, R. Khasanov

Summary: In this study, pressure-tuned and ultra-low temperature muon spin spectroscopy was used to uncover the unconventional nature of superconductivity in RbV3Sb5 and KV3Sb5. It was found that at ambient pressure, time-reversal symmetry breaking charge order was observed in RbV3Sb5, and the superconducting state displayed a nodal energy gap and reduced superfluid density. Applying pressure suppressed the charge-order transitions, increased the superfluid density, and progressively evolved the superconducting state from nodal to nodeless. The optimal superconductivity state was found to break time-reversal symmetry. These results offer unique insights into the nature of the pairing state and highlight the tunable nodal kagome superconductivity competing with time-reversal symmetry-breaking charge order.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Partitioning the Two-Leg Spin Ladder in Ba2Cu1-xZnxTeO6: From Magnetic Order through Spin-Freezing to Paramagnetism

Charlotte Pughe, Otto H. J. Mustonen, Alexandra S. Gibbs, Stephen Lee, Rhea Stewart, Ben Gade, Chennan Wang, Hubertus Luetkens, Anna Foster, Fiona C. Coomer, Hidenori Takagi, Edmund J. Cussen

Summary: Ba2CuTeO6 is a material with a two-leg spin ladder structure of Cu2+ cations, which can be chemically tuned by substituting non-magnetic Zn2+ at the Cu2+ site. The substitution partitions the spin ladders into clusters, leading to a transition from long-range order to spin-freezing as the Zn2+ substitution increases. This provides a well-controlled tuning of the magnetic disorder and a model system for studying defects and segmentation in low-dimensional quantum magnets.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Inorganic & Nuclear

A Trinuclear High-Spin Iron(III) Complex with a Geometrically Frustrated Spin Ground State Featuring Negligible Magnetic Anisotropy and Antisymmetric Exchange

Benjamin Kintzel, Michael Boehme, Daniel Plaul, Helmar Goerls, Nicolas Yeche, Felix Seewald, Hans -Henning Klauss, Andrei A. Zvyagin, Erik Kampert, Thomas Herrmannsdoerfer, Gwendolyne Pascua, Christopher Baines, Hubertus Luetkens, Winfried Plass

Summary: The trinuclear high-spin iron(III) complex [Fe3Cl3(saltag(Br))(py)(6)]ClO4 was synthesized and characterized. Magnetic measurements showed antiferromagnetic exchange between the iron(III) ions, resulting in a geometrically spin-frustrated ground state. High-field magnetization and muon-spin relaxation experiments confirmed the isotropic nature of the magnetic exchange and the absence of significant intermolecular interactions. The complex is considered an ideal candidate for studying spin-electric effects.

INORGANIC CHEMISTRY (2023)

Article Multidisciplinary Sciences

Nodeless electron pairing in CsV3Sb5-derived kagome superconductors

Yigui Zhong, Jinjin Liu, Xianxin Wu, Zurab Guguchia, J. -x. Yin, Akifumi Mine, Yongkai Li, Sahand Najafzadeh, Debarchan Das, Charles Mielke, Rustem Khasanov, Hubertus Luetkens, Takeshi Suzuki, Kecheng Liu, Xinloong Han, Takeshi Kondo, Jiangping Hu, Shik Shin, Zhiwei Wang, Xun Shi, Yugui Yao, Kozo Okazaki

Summary: The newly discovered kagome superconductors offer a promising platform to explore the interplay between band topology, electronic order, and lattice geometry. However, the nature of the superconducting ground state and the electron pairing symmetry in this system is still not well understood. In this study, we directly observed a nodeless and nearly isotropic superconducting gap in the momentum space of two different kagome superconductors using high-resolution and low-temperature angle-resolved photoemission spectroscopy. The unique properties of the superconducting gap are independent of charge order in the normal state. This comprehensive characterization provides essential information about the electron pairing symmetry in kagome superconductors and advances our understanding of superconductivity and intertwined electronic orders in quantum materials.

NATURE (2023)

Article Instruments & Instrumentation

GermanIum array for non-destructive testing (GIANT) setup for muon-induced x-ray emission (MIXE) at the Paul Scherrer Institute

Lars Gerchow, Sayani Biswas, Gianluca Janka, Carlos Vigo, Andreas Knecht, Stergiani Marina Vogiatzi, Narongrit Ritjoho, Thomas Prokscha, Hubertus Luetkens, Alex Amato

Summary: The pioneering work on Muon-induced x-ray emission (MIXE) technique was conducted at the Paul Scherrer Institute (PSI) in the 1980s for non-destructive assessment of elemental compositions. In recent years, this method has been improved and adopted at many muon facilities worldwide. The GermanIum Array for Non-destructive Testing (GIANT) setup at PSI is a dedicated MIXE spectrometer that offers excellent performance and has been used for various applications such as archaeological research and collaboration with the industry.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Humanities, Multidisciplinary

The non-destructive investigation of a late antique knob bow fibula (Bugelknopffibel) from Kaiseraugst/CH using Muon Induced X-ray Emission (MIXE)

Sayani Biswas, Isabel Megatli-Niebel, Lilian Raselli, Ronald Simke, Thomas Elias Cocolios, Nilesh Deokar, Matthias Elender, Lars Gerchow, Herbert Hess, Rustem Khasanov, Andreas Knecht, Hubertus Luetkens, Kazuhiko Ninomiya, Angela Papa, Thomas Prokscha, Peter Reiter, Akira Sato, Nathal Severijns, Toni Shiroka, Michael Seidlitz, Stergiani Marina Vogiatzi, Chennan Wang, Frederik Wauters, Nigel Warr, Alex Amato

Summary: A knob bow fibula of the Leutkirch type was excavated in 2018 in Switzerland and analyzed for its elemental composition. The fibula was made of bronze and consisted of two workpieces, with one being cast bronze and the other being forged bronze. The main elements in the fibula were copper, zinc, tin, and lead.

HERITAGE SCIENCE (2023)

Article Anthropology

An arrowhead made of meteoritic iron from the late Bronze Age settlement of Mo & BULL;rigen, Switzerland and its possible source

Beda A. Hofmann, Sabine Bolliger Schreyer, Sayani Biswas, Lars Gerchow, Daniel Wiebe, Marc Schumann, Sebastian Lindemann, Diego Ramirez Garcia, Pierre Lanari, Frank Gfeller, Carlos Vigo, Debarchan Das, Fabian Hotz, Katharina von Schoeler, Kazuhiko Ninomiya, Megumi Niikura, Narongrit Ritjoho, Alex Amato

Summary: A search for meteoritic iron artefacts in the Lake of Biel area in Switzerland has led to the identification of a single object, an arrowhead, with meteoritic origin. The object's elemental composition, mineralogy, and presence of cosmogenic 26Al provide strong evidence for its meteoritic nature. This discovery is significant for understanding the use and distribution of meteoritic iron in ancient societies.

JOURNAL OF ARCHAEOLOGICAL SCIENCE (2023)

Article Chemistry, Multidisciplinary

The pairing symmetry in quasi-one-dimensional superconductor Rb2Mo3As3

Ziga Gosar, Tina Arh, Kevin Jaksetic, Andrej Zorko, Wenhao Liu, Hanlin Wu, Chennan Wang, Hubertus Luetkens, Bing Lv, Denis Arcon

Summary: Quasi-one-dimensional electron systems exhibit instability towards long-range ordered phases at low temperatures. In this study, muon spin rotation and relaxation (& mu;SR) were used to investigate the superconducting state in Rb2Mo3As3, which has one of the highest critical temperatures Tc = 10.4 K among quasi-one-dimensional superconductors. The results show stronger damping below Tc due to the formation of a vortex lattice. Comparison of different models suggests that the s-wave scenario provides the best fit, but with an anomalously small superconducting gap ⠁0/Tc ratio of 2 ⠁0/kBTc = 2.74(1). However, the nodal p-wave or d-wave scenarios cannot be ruled out based on slightly worse fits, yielding more realistic ratios of 2 ⠁0/kBTc = 3.50(2) and 2 ⠁0/kBTc = 4.08(1), respectively.

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS (2023)

Article Chemistry, Multidisciplinary

High p doped and robust band structure in Mg-doped hexagonal boron nitride

Lama Khalil, Cyrine Ernandes, Jose Avila, Adrien Rousseau, Pavel Dudin, Nikolai D. Zhigadlo, Guillaume Cassabois, Bernard Gil, Fabrice Oehler, Julien Chaste, Abdelkarim Ouerghi

Summary: In this study, we demonstrate the stable growth of p-type hexagonal boron nitride (h-BN) by using Mg atoms as substitutional impurities. Our experiments involving micro-Raman spectroscopy, nano-ARPES, and KPFM show that Mg-doping significantly alters the electronic properties of h-BN. The Mg dopants shift the valence band maximum and result in a reduced Fermi level difference between pristine and Mg-doped h-BN crystals. This research establishes Mg-doping as a promising method for high-quality p-type doped h-BN films, which are crucial for applications in deep ultraviolet LEDs and wide bandgap optoelectronic devices.

NANOSCALE ADVANCES (2023)

Article Physics, Multidisciplinary

Microscopic nature of the charge-density wave in the kagome superconductor RbV3Sb5

Jonathan Frassineti, Pietro Bonfa, Giuseppe Allodi, Erick Garcia, Rong Cong, Brenden R. Ortiz, Stephen D. Wilson, Roberto De Renzi, Vesna F. Mitrovic, Samuele Sanna

Summary: The recently discovered vanadium-based Kagome metals AV3Sb5 exhibit a unique phase transition into charge-density wave (CDW) order that occurs before unconventional superconductivity and time-reversal symmetry breaking. To understand the role of CDW in establishing these unconventional phases, it is crucial to unveil the symmetries and microscopic nature of the charge-ordered phase. In this study, the exact structure of the charge-density wave ordering temperature (TCDW) below RbV3Sb5 is determined through a comprehensive set of nuclear magnetic resonance (NMR) measurements and density functional theory simulations. The findings provide important guidance for developing a theoretical framework to predict properties of exotic electronic orders within the CDW phase.

PHYSICAL REVIEW RESEARCH (2023)

Article Materials Science, Multidisciplinary

Coexistence of random singlets and disordered Kitaev spin liquid in H3LiIr2O6

Chanhyeon Lee, Suheon Lee, Youngsu Choi, C. Wang, H. Luetkens, T. Shiroka, Zeehoon Jang, Young-Gui Yoon, Kwang-Yong Choi

Summary: We used various measurements, including magnetic susceptibility, muon-spin relaxation, and nuclear magnetic resonance, to study the spin dynamics of the quantum spin liquid candidate H3LiIr2O6. We identified two characteristic temperatures, Tg = 110 K and T* = 26 K, through analysis of the relaxation rates. Below Tg, there were distinct components of slower relaxation rate governed by gapped excitations and faster relaxation rate related to gapless excitations. We observed divergent magnetic susceptibility, power-law dependence of relaxation rate on temperature, and weakly activated behavior, indicating the coexistence of a disordered spin-liquid state and spin singlets with distributed gaps.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

?SR measurements on Sr2RuO4 under (110) uniaxial stress

Vadim Grinenko, Rajib Sarkar, Shreenanda Ghosh, Debarchan Das, Zurab Guguchia, Hubertus Luetkens, Ilya Shipulin, Aline Ramires, Naoki Kikugawa, Yoshiteru Maeno, Kousuke Ishida, Clifford W. Hicks, Hans-Henning Klauss

Summary: Muon spin rotation/relaxation (μSR) and polar Kerr effect measurements provide evidence for a time-reversal symmetry breaking (TRSB) superconducting state in Sr2RuO4. However, the absence of a cusp in the superconducting transition temperature (Tc) vs stress and the absence of a resolvable specific heat anomaly at TRSB transition temperature (TTRSB) under uniaxial stress challenge a hypothesis of TRSB superconductivity. Recent μSR studies under pressure and with disorder indicate that the splitting between Tc and TTRSB occurs only when the structural tetragonal symmetry is broken. To further test such behavior, we measured Tc through susceptibility measurements and TTRSB through μSR, under uniaxial stress applied along a (110) lattice direction. We have obtained preliminary evidence for suppression of TTRSB below Tc, at a rate much higher than the suppression rate of Tc.

PHYSICAL REVIEW B (2023)

暂无数据