4.6 Article

Resonant electron transport in single-molecule junctions: Vibrational excitation, rectification, negative differential resistance, and local cooling

期刊

PHYSICAL REVIEW B
卷 83, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.115414

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. European Cooperation in Science and Technology (COST)
  3. German-Israeli Foundation for Scientific Development (GIF)
  4. Fonds der Chemischen Industrie (FCI)

向作者/读者索取更多资源

Vibronic effects in resonant electron transport through single-molecule junctions are analyzed. The study is based on generic models for molecular junctions, which include electronic states on the molecular bridge that are vibrationally coupled and exhibit Coulomb interaction. The transport calculations employ a master equation approach. The results, obtained for a series of models with increasing complexity, show a multitude of interesting transport phenomena, including vibrational excitation, rectification, negative differential resistance, as well as local cooling. While some of these phenomena have been observed or proposed before, the present analysis extends previous studies and allows a more detailed understanding of the underlying transport mechanisms. In particular, it is shown that many of the observed phenomena can only be explained if electron-hole pair creation processes at the molecule-lead interface are taken into account. Furthermore, vibronic effects in systems with multiple electronic states and their role for the stability of molecular junctions are analyzed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据