4.6 Article

Resolution limit of a phononic crystal superlens

期刊

PHYSICAL REVIEW B
卷 83, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.224301

关键词

-

资金

  1. NSF [0924103]
  2. NSERC
  3. Directorate For Engineering
  4. Div Of Electrical, Commun & Cyber Sys [0924103] Funding Source: National Science Foundation

向作者/读者索取更多资源

We report on the subwavelength imaging capabilities of a phononic crystal (PC) flat lens consisting of a triangular array of steel cylinders in methanol, all surrounded by water. The image resolution of the PC flat lens beats the Rayleigh diffraction limit because bound modes in the lens can be excited by evanescent waves emitted by the source. These are modes that only propagate in the direction parallel to the water-lens interface. These modes resonantly amplify evanescent waves that contribute to the reconstruction of an image. By employing the finite difference time domain method and ultrasonic experiments, we also explore the effect on the image resolution and focal point on various structural and operational parameters, such as source frequency, geometry of the lens, source position, and time. The mechanisms by which these factors affect resolution are discussed in terms of the competition between the contribution of propagative modes to focusing and the ability of the source to excite bound modes of the PC lens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据