4.6 Article

Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections

期刊

PHYSICAL REVIEW B
卷 84, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.085128

关键词

-

资金

  1. NSERC
  2. Tier I Canada Research Chair Program

向作者/读者索取更多资源

The conductivity of the two-dimensional Hubbard model is particularly relevant for high-temperature superconductors. Vertex corrections are expected to be important because of strongly momentum-dependent self-energies. To attack this problem, one must also take into account the Mermin-Wagner theorem, the Pauli principle, and crucial sum rules in order to reach nonperturbative regimes. Here, we use the two-particle self-consistent approach that satisfies these constraints. This approach is reliable from weak to intermediate coupling. A functional derivative approach ensures that vertex corrections are included in a way that satisfies the f-sum rule. The two types of vertex corrections that we find are the antiferromagnetic analogs of the Maki-Thompson and Aslamasov-Larkin contributions of superconducting fluctuations to the conductivity but, contrary to the latter, they include nonperturbative effects. The resulting analytical expressions must be evaluated numerically. The calculations are impossible unless a number of advanced numerical algorithms are used. These algorithms make extensive use of fast Fourier transforms, cubic splines, and asymptotic forms. A maximum entropy approach is specially developed for analytical continuation of our results. These algorithms are explained in detail in the appendices. The numerical results are for nearest-neighbor hoppings. In the pseudogap regime induced by two-dimensional antiferromagnetic fluctuations, the effect of vertex corrections is dramatic. Without vertex corrections the resistivity increases as we enter the pseudogap regime. Adding vertex corrections leads to a drop in resistivity, as observed in some high-temperature superconductors. At high temperatures, the resistivity saturates at the Ioffe-Regel limit. At the quantum critical point and beyond, the resistivity displays both linear and quadratic temperature dependence and there is a correlation between the linear term and the superconducting transition temperature. A hump is observed in the mid-infrared range of the optical conductivity in the presence of antiferromagnetic fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据