4.6 Article

Effect of spin diffusion on current generated by spin motive force

期刊

PHYSICAL REVIEW B
卷 84, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.054462

关键词

-

资金

  1. NRF [2009-0084542, 2010-0014109, 2010-0023798, 2011-0009278]
  2. KRF [KRF-2009-013-C00019]
  3. BK21
  4. TJ Park
  5. National Research Foundation of Korea [2009-0084542, 2011-0009278] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Spin motive force is a spin-dependent force on conduction electrons induced by magnetization dynamics. To examine its effects on magnetization dynamics, it is indispensable to take into account spin accumulation, spin diffusion, and spin-flip scattering since the spin motive force is, in general, nonuniform. We examine the effects of all these on the way the spin motive force generates the charge and spin currents in conventional situations, where the conduction electron spin relaxation dynamics is much faster than the magnetization dynamics. When the spin-dependent electric field is spatially localized, which is common in experimental situations, we find that the conservative part of the spin motive force is unable to generate the charge current due to the cancellation effect by the diffusion current. We also find that the spin current is a nonlocal function of the spin motive force and can be effectively expressed in terms of nonlocal Gilbert damping tensor. It turns out that any spin-independent potential such as Coulomb potential does not affect our principal results. At the last part of this paper, we apply our theory to current-induced domain wall motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据