4.6 Article

Numerical studies of a one-dimensional three-spin spin-glass model with long-range interactions

期刊

PHYSICAL REVIEW B
卷 81, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.064415

关键词

-

资金

  1. Swiss National Science Foundation [PP002-114713]
  2. ETH Zurich Center for Theoretical Studies
  3. NSF [DMR-0906366]
  4. Direct For Mathematical & Physical Scien [906366] Funding Source: National Science Foundation
  5. Division Of Materials Research [906366] Funding Source: National Science Foundation

向作者/读者索取更多资源

We study a p-spin spin-glass model to understand if the finite-temperature glass transition found in the mean-field regime of p-spin models, and used to model the behavior of structural glasses, persists in the nonmean-field regime. By using a three-spin spin-glass model with long-range power-law diluted interactions we are able to continuously tune the (effective) space dimension via the exponent of the interactions. Monte Carlo simulations of the spin-glass susceptibility and the two-point finite-size correlation length show that deep in the nonmean-field regime, the finite-temperature transition is lost whereas this is not the case in the mean-field regime, in agreement with the prediction of Moore and Drossel [Phys. Rev. Lett. 89, 217202 (2002)] that three-spin models are in the same universality class as an Ising spin glass in a magnetic field. However, slightly in the nonmean-field region, we find an apparent transition in the three-spin model, in contrast to results for the Ising spin glass in a field. This may indicate that even larger sizes are needed to probe the asymptotic behavior in this region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据