4.6 Article

Spectral weight of doping-induced states in the two-dimensional Hubbard model

期刊

PHYSICAL REVIEW B
卷 81, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.235133

关键词

-

向作者/读者索取更多资源

The spectral weight of states induced in the Mott gap via hole doping in the two-dimensional Hubbard model is studied within cluster dynamical mean-field theory combined with finite-temperature exact diagonalization. If the cutoff energy is chosen to lie just below the upper Hubbard band, the integrated weight per spin is shown to satisfy W(+)(delta) >= delta (delta denotes the total number of holes), in agreement with model predictions by Eskes et al. [Phys. Rev. Lett. 67, 1035 (1991)]. However, if the cutoff energy is chosen to lie in the range of the pseudogap, W(+)(delta) remains much smaller than delta and approximately saturates near delta approximate to 0.2, ..., 0.3. The analysis of recent x-ray absorption spectroscopy data therefore depends crucially on the appropriate definition of the integration window.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据