4.6 Article

Nonlinear control of tunneling through an epsilon-near-zero channel

期刊

PHYSICAL REVIEW B
卷 79, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.245135

关键词

capacitance; dielectric waveguides; diodes; electromagnetic wave transmission; resonance; tunnelling

资金

  1. Australian National University
  2. Australian Research Council
  3. U.S. Office of Naval Research (ONR) [00014-07-1-0622]

向作者/读者索取更多资源

The epsilon-near-zero (ENZ) tunneling phenomenon allows full transmission of waves through a narrow channel even in the presence of a strong geometric mismatch. Here we experimentally demonstrate nonlinear control of the ENZ tunneling by an external field, as well as self-modulation of the transmission resonance due to the incident wave. Using a waveguide section near cut-off frequency as the ENZ system, we introduce a diode with tunable and nonlinear capacitance to demonstrate both these effects. Our results confirm earlier theoretical ideas on using an ENZ channel for dielectric sensing and their potential applications for tunable slow-light structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion

Nikita Nefedkin, Ahmed Mekawy, Jonas Krakofsky, Yongrui Wang, Alexey Belyanin, Mikhail Belkin, Andrea Alu

Summary: Engineered intersubband transitions in multi-quantum well semiconductor heterostructures exhibit high second-order nonlinear susceptibilities in metasurfaces. By optimizing the design, the saturation limits in mid-infrared frequency upconversion in nonlinear metasurfaces are significantly extended. This has important implications for night-vision imaging and compact nonlinear wave mixing systems.

ADVANCED MATERIALS (2023)

Article Nanoscience & Nanotechnology

Low-Symmetry Nanophotonics

Alex Krasnok, Andrea Alu

Summary: This paper discusses the unique opportunities that symmetry violations provide in nanophotonics and introduces methods for controlling wave interactions in nanostructures to achieve various functionalities.

ACS PHOTONICS (2022)

Review Optics

Roadmap on topological photonics

Hannah Price, Yidong Chong, Alexander Khanikaev, Henning Schomerus, Lukas J. Maczewsky, Mark Kremer, Matthias Heinrich, Alexander Szameit, Oded Zilberberg, Yihao Yang, Baile Zhang, Andrea Alu, Ronny Thomale, Iacopo Carusotto, Philippe St-Jean, Alberto Amo, Avik Dutt, Luqi Yuan, Shanhui Fan, Xuefan Yin, Chao Peng, Tomoki Ozawa, Andrea Blanco-Redondo

Summary: Topological photonics controls the behavior of light through the design of photonic structures, with potential applications in photonics devices. This roadmap surveys emerging areas of research within this field, with a focus on addressing fundamental scientific questions and presenting exciting opportunities for future research and developments.

JOURNAL OF PHYSICS-PHOTONICS (2022)

Article Optics

Cloaked near-field probe for non-invasive near-field optical microscopy

Felipe Bernal Arango, Filippo Alpeggiani, Donato Conteduca, Aron Opheij, Aobo Chen, Mohamed Abdelrahman, Thomas F. Krauss, Andrea Alu, Francesco Monticone, Laurens Kuipers

Summary: Near-field scanning optical microscopy is a powerful technique for imaging below the diffraction limit. In this study, a cloaked near-field probe is designed and fabricated by controlling and balancing its electric and magnetic polarizabilities through nanostructuring. The probe-induced perturbations are largely suppressed, allowing for non-invasive near-field optical microscopy of classical and quantum nanosystems.

OPTICA (2022)

Editorial Material Materials Science, Multidisciplinary

New OMEx Deputy Editor: editorial

Andrea Alu

Summary: The appointment of Alessandro Salandrino as Deputy Editor for Optical Materials Express is announced by Editor-in-Chief, Andrea Alu.

OPTICAL MATERIALS EXPRESS (2022)

Article Chemistry, Multidisciplinary

Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor

Julian Klein, Zhigang Song, Benjamin Pingault, Florian Dirnberger, Hang Chi, Jonathan B. Curtis, Rami Dana, Rezlind Bushati, Jiamin Quan, Lukas Dekanovsky, Zdenek Sofer, Andrea Alu, Vinod M. Menon, Jagadeesh S. Moodera, Marko Loncar, Prineha Narang, Frances M. Ross

Summary: Atomic-level defects in van der Waals (vdW) materials are essential for quantum technologies and sensing applications. The magnetic semiconductor CrSBr, with a direct gap and rich magnetic phase diagram, exhibits optically active defects that are correlated with the magnetic environment. The narrow defect emission in CrSBr is related to both the bulk magnetic order and an additional defect-induced magnetic order. This study establishes vdW magnets like CrSBr as an exceptional platform for studying defects and creating tailor-made magnetic textures with optical access.

ACS NANO (2023)

Article Engineering, Electrical & Electronic

Development of an Equivalent Circuit Model for the Design of Array of Electrically Small Antennas

Zahra Esmati, David A. Powell, Michael C. Skipper, Michael D. Abdalla, J. Scott Tyo

Summary: This article presents a fully parameterized circuit model for array antennas, which relates antenna performance and field coupling to the physical parameters of the elements. The simplified model can be used as a surrogate for full-wave modeling during the initial optimization steps in array design. The model considers mutual coupling between array elements through the feeding network and free space, and provides excellent agreement with the scattering parameters calculated by the full-wave numerical model.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION (2023)

Article Nanoscience & Nanotechnology

Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal

Guangwei Hu, Weiliang Ma, Debo Hu, Jing Wu, Chunqi Zheng, Kaipeng Liu, Xudong Zhang, Xiang Ni, Jianing Chen, Xinliang Zhang, Qing Dai, Joshua D. Caldwell, Alexander Paarmann, Andrea Alu, Peining Li, Cheng-Wei Qiu

Summary: Various optical crystals with opposite permittivity components have been observed and characterized in the mid-infrared regime. These crystals possess hyperbolic polaritons with large-momenta optical modes and wave confinement, making them promising for nanophotonic on-chip technologies. Monoclinic CdWO4 crystals are shown to exhibit symmetry-broken hyperbolic phonon polaritons and offer new opportunities for polaritonic phenomena.

NATURE NANOTECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Solving integral equations in free space with inverse-designed ultrathin optical metagratings

Andrea Cordaro, Brian Edwards, Vahid Nikkhah, Andrea Alu, Nader Engheta, Albert Polman

Summary: As traditional microelectronic technology reaches its limits in speed and power consumption, there is a strong demand for novel computing strategies. Analogue optical computing has the advantage of processing large amounts of data at high speeds with negligible energy costs. Researchers have recently explored ultrathin optical metasurfaces for real-time image processing, particularly for edge detection. By incorporating feedback, they have also demonstrated that metamaterials can be used to solve complex mathematical problems, although this has been limited to guided-wave systems and large setups. This study presents an ultrathin Si metasurface-based platform for analogue computing, capable of solving Fredholm integral equations of the second kind using free-space visible radiation. The device combines an inverse-designed Si-based metagrating with a semitransparent mirror to perform the required Neumann series and solve the equation in the analogue domain at the speed of light. The use of visible wavelength operation enables a compact, ultrathin device that can be integrated on a chip and has high processing speeds.

NATURE NANOTECHNOLOGY (2023)

Editorial Material Materials Science, Multidisciplinary

New topic categories for Optical Materials Express

Andrea Alu

Summary: Optical Materials Express Editor-in-Chief, Andrea Ali, has introduced new topic categories for the Journal, redefining the Journal scope and better reflecting the current state of this dynamic field of research.

OPTICAL MATERIALS EXPRESS (2023)

Article Nanoscience & Nanotechnology

Inverse Design of Nonlinear Polaritonic Metasurfaces for Second Harmonic Generation

Sander A. . Mann, Heedong Goh, Andrea Alu

Summary: Enabling strong nonlinear optical phenomena requires carefully designed photonic devices to maximize light-matter interactions. Topology optimization has been widely used in optimizing photonic devices due to its efficiency in dealing with large parameter spaces. However, the application of topology optimization in nonlinear effects in dielectric structures is limited.

ACS PHOTONICS (2023)

Article Nanoscience & Nanotechnology

Nonreciprocal total cross section of quantum metasurfaces

Nikita Nefedkin, Michele Cotrufo, Andrea Alu

Summary: Nonreciprocity originating from classical interactions among nonlinear scatterers is explored in this work, offering a promising tool for quantum information processing and quantum computing. It is shown that large nonreciprocal responses can be achieved in nonlinear systems by controlling the position and transition frequencies of the atoms, without requiring a nonreciprocal environment. The connection between this effect and the asymmetric population of a slowly decaying dark state is demonstrated.

NANOPHOTONICS (2023)

Article Materials Science, Multidisciplinary

Metahouse: Noise-Insulating Chamber Based on Periodic Structures

Mariia Krasikova, Sergey Krasikov, Anton Melnikov, Yuri Baloshin, Steffen Marburg, David A. Powell, Andrey Bogdanov

Summary: This study develops the concept of a metahouse chamber for multiple band noise insulation, using a ventilated structure based on the idea of metamaterial systems. Broad stop-bands are achieved through strong coupling between pairs of Helmholtz resonators in the structure, demonstrating an averaged transmission attenuation of -18.6 dB within the spectral range from 1500 to 16 500 Hz both numerically and experimentally. The sparseness of the structure and the possibility of using optically transparent materials suggest the potential for partial optical transparency depending on the arrangement of structural elements.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Review Optics

Photonics of time-varying media

Emanuele Galiffi, Romain Tirole, Shixiong Yin, Huanan Li, Stefano Vezzoli, Paloma A. Huidobro, Mario G. Silveirinha, Riccardo Sapienza, Andrea Alu, J. B. Pendry

Summary: This review comprehensively discusses the recent progress of time modulation in photonic metamaterials, including temporal switching, photonic time-crystals, and spatiotemporal modulation. It also reviews and provides perspectives on the applications of time modulation in nonreciprocity, synthetic motion, giant anisotropy, etc.

ADVANCED PHOTONICS (2022)

Article Quantum Science & Technology

Dark-State Induced Quantum Nonreciprocity

Nikita Nefedkin, Michele Cotrufo, Alex Krasnok, Andrea Alu

Summary: This study investigates nonreciprocal wave phenomena in atom-like quantum systems and reviews different approaches to isolation and nonreciprocity in quantum systems. It discovers that nonreciprocity induced by nonlinearity and discusses its underlying physics.

ADVANCED QUANTUM TECHNOLOGIES (2022)

暂无数据