4.6 Article

Hole drift mobility measurements in polycrystalline CuIn1-xGaxSe2

期刊

PHYSICAL REVIEW B
卷 80, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.235201

关键词

cadmium compounds; copper compounds; electric admittance; gallium compounds; hole mobility; indium compounds; photoconductivity; semiconductor thin films; solar cells; ternary semiconductors

资金

  1. National Renewable Energy Laboratory [NDJ-2-30630-24, XAT-4-33624-01]

向作者/读者索取更多资源

We present temperature-dependent hole drift mobility measurements on polycrystalline CuIn1-xGaxSe2 (CIGS) thin films incorporated into solar-cell structures. The drift mobilities were determined from photocarrier time-of-flight measurements in a depletion region at the top interface with cadmium sulfide. 12 cells, originating in two laboratories, were examined. The drift mobilities ranged from 0.02 to 0.7 cm(2)/Vs at room temperature and were weakly temperature dependent in the range of 100-300 K. These drift mobilities are at the low end of the range of hole mobilities reported from previous Hall effect and admittance measurements for varying CIGS materials. We found approximately a square-root correlation between the width of the depletion layer in our samples and the magnitude of the drift mobility. Both the magnitude and the temperature dependence of the drift mobility are consistent with results in amorphous and nanocrystalline silicon that have been modeled using a disorder-induced transport edge. The source of nanometer-scale disorder in these CIGS materials is not noncrystallinity; chemical composition fluctuations are one alternative source of disorder. The correlation of the depletion-width and drift mobility measurements in CIGS may be evidence for a broader effect of disorder in these materials in both reducing the carrier drift mobility and generating acceptor defects near the valence bandedge. Hole drift mobilities are sensitive to disorder-induced traps near the valence bandedge. Our temperature-dependence measurements indicate that the width of the corresponding valence bandtail is less than 20 meV. Previous optical-absorption spectroscopy showed that Urbach tails in similar CIGS samples are generally 20 meV or wider, which indicates that the valence bandtail does not typically determine the Urbach tails.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据