4.6 Article

Low-temperature transport in highly boron-doped nanocrystalline diamond

期刊

PHYSICAL REVIEW B
卷 79, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.201203

关键词

boron; diamond; electric admittance; fluctuations in superconductors; magnetoresistance; metal-insulator transition; nanostructured materials; optical susceptibility; thin films

资金

  1. Research Foundation Flanders (FWO) [G.0068.07, G.0430.07]
  2. Quantum Effects in Clusters and Nanowires [IAP-P6/42]
  3. Nanosystems Initiative Munich, NIM

向作者/读者索取更多资源

We studied the transport properties of highly boron-doped nanocrystalline diamond thin films at temperatures down to 50 mK. The system undergoes a doping-induced metal-insulator transition with an interplay between intergranular conductance g and intragranular conductance g(0), as expected for a granular system. The conduction mechanism in the case of the low-conductivity films close to the metal-insulator transition has a temperature dependence similar to Efros-Shklovskii type of hopping. On the metallic side of the transition, in the normal state, a logarithmic temperature dependence of the conductivity is observed, as expected for a metallic granular system. Metallic samples far away from the transition show similarities to heavily boron-doped single-crystal diamond. Close to the transition, the behavior is richer. Global phase coherence leads in both cases to superconductivity (also checked by ac susceptibility), but a peak in the low-temperature magnetoresistance measurements occurs for samples close to the transition. Corrections to the conductance according to superconducting fluctuations account for this negative magnetoresistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据