4.6 Article

Structural phase transitions and fundamental band gaps of MgxZn1-xO alloys from first principles

期刊

PHYSICAL REVIEW B
卷 80, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.80.144101

关键词

-

资金

  1. Sonderforschungsbereich [SFB 762]
  2. Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

The structural phase transitions and the fundamental band gaps of MgxZn1-xO alloys are investigated by detailed first-principles calculations in the entire range of Mg concentrations x, applying a multiple-scattering theoretical approach (Korringa-Kohn-Rostoker method). Disordered alloys are treated within the coherent-potential approximation. The calculations for various crystal phases have given rise to a phase diagram in good agreement with experiments and other theoretical approaches. The phase transition from the wurtzite to the rock-salt structure is predicted at the Mg concentration of x=0.33, which is close to the experimental value of 0.33-0.40. The size of the fundamental band gap, typically underestimated by the local-density approximation, is considerably improved by the self-interaction correction. The increase in the gap upon alloying ZnO with Mg corroborates experimental trends. Our findings are relevant for applications in optical, electrical, and, in particular, in magnetoelectric devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据