4.6 Article

Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica

期刊

PHYSICAL REVIEW B
卷 77, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.115325

关键词

-

向作者/读者索取更多资源

An efficient means to obtain light emission from a silicon-based material would enable integrating both optical and electronic functionalities on the same silicon chips. The long radiative lifetimes have until recently obstructed efficient light emission from Si. A nanocrystalline approach has opened up a prospect for silicon in the optoelectronics application field. However, the structure of the nanocrystal-matrix interface, which appears to be important for the light emission, remains unclear. In the present work, by means of molecular dynamics atomistic models, small nc-Si embedded into defect-free a-SiO(2) are constructed using two different classical interatomic potentials. The models allow analysis of the defects at the interface which may serve as radiative and nonradiative recombination centers for excitons formed in nc's and, thus, be responsible for the optical properties of the structure. We analyzed the interface structures after a series of high-temperature annealing runs and subsequent relaxation at room temperature. The results show that the nc-Si/SiO(2) interface is organized by means of a thin suboxide layer (SiO(2)-x), which contains a considerable amount of undercoordinated defects as well. We also observed the spontaneous formation of silanone bonds (Si = O), frequently discussed in the literature to be centers with an important role on the optical properties of the nc structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据