4.6 Article

Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam

期刊

PHYSICAL REVIEW B
卷 77, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.085412

关键词

-

向作者/读者索取更多资源

We theoretically analyze optical forces on aggregates of metal nanoparticles in a focused Gaussian beam by extending the generalized Mie theory, which includes higher order multipoles and retardation effects. For two interacting metallic particles, an attractive gradient force, mainly caused by multipole plasmon excitation, exists at short interparticle distances, while induced dipolar fields dominate for separations of the order of the particle radius R or larger. The long-range force component can be either attractive or repulsive depending on the phase of the induced dipoles, as determined by the illumination wavelength and the collective dipolar plasmon resonance. In particular, the repulsive force that occurs for illumination near the plasmon resonance wavelength can be so large that it overcomes the optical trapping effect of the Gaussian beam.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据