4.6 Article

Dynamical mean field study of the two-dimensional disordered Hubbard model

期刊

PHYSICAL REVIEW B
卷 77, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.054202

关键词

-

向作者/读者索取更多资源

We study the paramagnetic Anderson-Hubbard model using an extension of dynamical mean field theory (DMFT), known as statistical DMFT, that allows us to treat disorder and strong electronic correlations on equal footing. An approximate nonlocal Green's function is found for individual disorder realizations and then configuration averaged. We apply this method to two-dimensional lattices with up to 1000 sites in the strong disorder limit, where an atomic-limit approximation is made for the self-energy. We investigate the scaling of the inverse participation ratio at quarter- and half-filling, and find a nonmonotonic dependence of the localization length on the interaction strength. For strong disorder, we do not find evidence for an insulator-metal transition, and the disorder potential becomes unscreened near the Mott transition. Furthermore, strong correlations suppress the Altshuler-Aronov density of states anomaly near half-filling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据