4.6 Article

Highly frustrated magnetic clusters:: The kagome on a sphere

期刊

PHYSICAL REVIEW B
卷 77, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.094420

关键词

-

向作者/读者索取更多资源

We present a detailed study of the low-energy excitations of two existing finite-size realizations of the planar kagome Heisenberg antiferromagnet on the sphere: the cuboctahedron and the icosidodecahedron. After highlighting a number of special spectral features (such as the presence of low-lying singlets below the first triplet and the existence of localized magnons) we focus on two major issues. The first concerns the nature of the excitations above the plateau phase at 1/3 of the saturation magnetization Ms. Our exact diagonalizations for the s = 1/2 icosidodecahedron reveal that the low-lying plateau states are adiabatically connected to the degenerate collinear up-up-down ground states of the Ising point, at the same time being well isolated from higher excitations. A complementary physical picture emerges from the derivation of an effective quantum dimer model which reveals the central role of the topology and the intrinsic spin s. We also give a prediction for the low-energy excitations and thermodynamic properties of the spin s = 5/2 icosidodecahedron Mo72Fe30. In the second part we focus on the low-energy spectra of the s > 1/2 Heisenberg model in view of interpreting the broad inelastic neutron scattering response reported for Mo72Fe30. To this end we demonstrate the simultaneous presence of several broadened low-energy towers of states or rotational bands which arise from the large discrete spatial degeneracy of the classical ground states, a generic feature of highly frustrated clusters. This semiclassical interpretation is further corroborated by their striking symmetry pattern which is shown, by an independent group theoretical analysis, to be a characteristic fingerprint of the classical coplanar ground states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据