4.6 Article

Kinetic equations for transport through single-molecule transistors

期刊

PHYSICAL REVIEW B
卷 78, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.235424

关键词

Anderson model; Coulomb blockade; molecular electronics; perturbation theory; Q-factor; quantum dots; renormalisation; transistors; tunnelling; vibrational modes

向作者/读者索取更多资源

We present explicit kinetic equations for quantum transport through a general molecular quantum dot, accounting for all contributions up to fourth order perturbation theory in the tunneling Hamiltonian and the complete molecular density matrix. Such a full treatment describes not only sequential, cotunneling, and pair tunneling, but also contains terms contributing to renormalization of the molecular resonances as well as their broadening. Due to the latter all terms in the perturbation expansion are automatically well defined for any set of system parameters: no divergences occur and no by-hand regularization is required. Additionally we show that, in contrast to second order perturbation theory, in fourth order it is essential to account for quantum coherence between nondegenerate states, entering the theory through the nondiagonal elements of the density matrix. As a first application, we study a single-molecule transistor coupled to a localized vibrational mode (Anderson-Holstein model). We find that cotunneling-assisted sequential tunneling processes involving the vibration give rise to current peaks, i.e., negative differential conductance in the Coulomb-blockade regime. Such peaks occur in the crossover to strong electron-vibration coupling, where inelastic cotunneling competes with Franck-Condon suppressed sequential tunneling, and thereby indicate the strength of the electron-vibration coupling. The peaks depend sensitively on the coupling to a dissipative bath, thus providing also an experimental probe of the Q factor of the vibrational motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据