4.6 Article

Fast and noise-resistant ion-trap quantum computation with inherent dynamical decoupling

期刊

PHYSICAL REVIEW A
卷 89, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.89.022314

关键词

-

资金

  1. National Natural Science Foundation of China [11374054]
  2. Major State Basic Research Development Program of China [2012CB921601]

向作者/读者索取更多资源

We propose a scheme for realizing quantum logic gates between any pair of ions confined in a linear trap with a pair of laser beams tuned to the carrier. The striking feature of the scheme is that the carrier excitation accompanying the spin-motion coupling does not affect the gate dynamics. As a consequence, the gate not only is much more insensitive to motional heating but also can operate at a higher speed compared to the previous schemes. The other important advantages are that the gate speed does not need to be inversely proportional to the number of ions in the chain, and the accompanying carrier drive results in dynamical decoupling, making the gate performance robust against dephasing noises. We show that for the same error sources the gate infidelity can be decreased by about ten times compared with previous schemes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据