4.6 Article

Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms

期刊

PHYSICAL REVIEW A
卷 87, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.87.013845

关键词

-

资金

  1. National Natural Science Foundation of China [11174271, 61275115, 10874171]
  2. National Fundamental Research Program of China [2011CB00200]

向作者/读者索取更多资源

We performed an experiment to observe the storage of an input probe field and an idler field generated through an off-axis four-wave mixing (FWM) process via a double-Lambda configuration in a cold atomic ensemble. We analyzed the underlying physics in detail and found that the retrieved idler field came from two parts if there was no single-photon detuning for the pump pulse: Part 1 was from the collective atomic spin (the input probe field, the coupling field, and the pump field combined to generate the idler field through FWM; then the idler was stored through electromagnetically induced transparency). Part 2 was from the generated new FWM process during the retrieval process (the retrieved probe field, the coupling field, and the pump field combined to generate a new FWM signal). If there was single-photon detuning for the pump pulse, then the retrieved idler was mainly from part 2. The retrieved two fields exhibited damped oscillations with the same oscillatory period when a homogeneous external magnetic field was applied, which was caused by the Larmor spin precession. We also experimentally realized the storage and retrieval of an image of light using FWM, in which an image was added into the input signal. After the storage, the retrieved idler beams and input signal carried the same image. This image storage technique holds promise for applications in image processing, remote sensing, and quantum communication. DOI: 10.1103/PhysRevA.87.013845

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据